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Abstract
State estimation is a classical problem in quantum information. In optimization
of an estimation scheme, to find a lower bound to the error of the estimator
is a very important step. So far, all the proposed tractable lower bounds use
a derivative of the density matrix. However, sometimes, we are interested in
quantities with singularity, e.g. concurrence etc. In this paper, lower bounds
to a mean square error of an estimator are derived for a quantum estimation
problem without smoothness assumptions. Our main idea is to replace the
derivative by difference, as is done in classical estimation theory. We applied
the inequalities to several examples, and derived an optimal estimator for some
of them.

PACS numbers: 03.67.−a, 03.65.Yz
Mathematics Subject Classification: 62A01, 81P15, 81S25

1. Introduction

Quantum state estimation is a classical problem in quantum information [12, 16]. It is not
only useful for various purposes, e.g., evaluation of realized quantum information processing
systems, but also is a fundamental problem in its own right.

As is the case in classical estimation theory4, often, it is assumed that the unknown source
is a member of a parametrized family of quantum states, which is called a model, to reduce the
problem to the estimation of the unknown (in general, vector valued) parameter. Sometimes,
we are interested in some physical quantities of the state, e.g. entanglement of the state. In
such cases, the estimation of a function of the unknown parameter is considered.

So far, most of the studies of quantum estimation theory have assumed that the model
is a smooth surface in the space of quantum states, and that the function to be estimated is
differentiable up to the necessary order. Under these smoothness assumptions, tractable lower
bounds to the MSE of the estimator have been studied, and some of them give achievable

4 Throughout the paper, the estimation theory of classical probability distributions is called ‘classical estimation’.
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bounds [12, 15, 16, 25]. Especially, in the asymptotic regime, we have lots of results on
achievable bounds.

On the other hand, when there are singularities in the model and/or in the function to be
estimated, little has been found out, so far as general theory is concerned. It should be stressed
that there are some practically important examples to which the smoothness assumptions do
not apply. For example, concurrence, a measure of entanglement, is singular at zero point.
Also, considering that state estimation is a fundamental problem of quantum information, it
is better studied in the most general setting.

The discrete models, or the models whose parameter takes values in a discrete set, are
the only non-differentiable models which have been studied intensively, and there are many
results in special cases, mainly by exploiting symmetry. However, there are relatively few
results which are valid for all discrete models. To begin with, it is not straightforward even
to work out a non-trivial lower bound to the error of the optimal measurement. It is true that
the formula in [24, 14], which is a special case of the complementarity theorem of SDP, gives
necessary and sufficient conditions for the optimal measurement. However, this formula is far
from tractable in many cases, being a system of nonlinear matrix equations and inequalities.

The purpose of the paper is to give the first general treatment of quantum state estimation
without the smoothness assumptions, developing quantum versions of the Hammersley–
Chapman–Robbins inequality [6, 9], Kshirsagar inequality [18] and Koike inequality [17]
in classical statistics. While the lower bounds under the smoothness assumption use the
differential of the density matrix, our new inequalities use difference.

The paper is organized as follows. Section 2 is preliminaries. We give a brief review
on classical and quantum estimation theory, and set up the problem. In section 3, we state
our new inequalities, whose proofs are given in section 5. In section 4, our theory is applied
to several examples. Non-asymptotic and asymptotic inequalities are derived, and based on
those, optimal estimates are given for some of the examples. In section 6, we state the
conclusions and the future problems.

2. Preliminaries

2.1. Classical estimation theory

An important problem of classical estimation is to optimize the estimator of (a function of)
the parameter which is assigned for the unknown probability distribution. The error is often
evaluated by MSE under the unbiasedness condition. Here, the estimator is said to be unbiased
if its expectation equals the true value of (a function of) the parameter.

In many cases, the optimal solution is too hard to obtain. However, a series of tractable
lower bounds to mean square errors (MSEs) of unbiased estimators is derived using the
first-order and the higher order derivatives of the probability distribution with respect to the
parameter of the model. The inequality based on the first-order derivative is called the Cramér–
Rao (CR) inequality [20], while those which also exploit the higher order derivatives are called
Bhattacharyya inequalities [4]. By definition, the Bhattacharyya inequality is always not worse
than the CR inequality.

In general, none of these lower bounds is achievable, but yet there are many cases where
one of them can be achieved by some estimators. In the asymptotic limit, an asymptotic CR
inequality gives achievable lower bounds in general [1]. Needless to say, these inequalities
rely on the smoothness assumptions.

These inequalities can be generalized to the cases with singularity by replacing (resp.
higher order) derivatives by (resp. higher order) differences. A difference version of
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the CR inequality (resp. Bhattacharyya inequality) is the Hammersley–Chapman–Robbins–
Kshirsagar (HCRK) inequality [9, 6, 18] (resp. Koike inequality [17]). By definition, the
Koike inequality is always not worse than the HCRK inequality. When the singularity is
absent, by taking the difference infinitesimally small, those difference versions reproduce the
derivative versions. We can also make an asymptotic version of the HCRK inequality, but
unlike the differentiable cases, this bound is not always achievable [22]. See [2] for a more
detailed description of the theory which allows singularity.

2.2. Quantum estimation theory with smoothness assumptions (I)

Quantum versions for inequalities under the smoothness assumptions, i.e., quantum Cramér–
Rao (QCR) inequality [12, 16, 25] and quantum Bhattacharyya (QB) inequality [5], have
already been studied a lot.

One important point is that, due to the non-commutativity of quantum mechanics, there are
many quantum versions of those inequalities (quantum Cramér–Rao inequalities). A difficulty
is that there is no ‘best’ QCR inequality. That is, to obtain the tighter lower bound, one must
chose a proper version of QCR depending on the estimation problem of interest.

However, if either the parameter of the model is scalar valued, or a scalar-valued function
of the parameter is to be estimated, an SLD QCR (defined later) gives a tighter lower bound
than any other QCR. Also, in this case, an SLD QCR gives the asymptotically achievable
lower bound to the error of estimators, as in the classical estimation theory.

Now, we state the mathematical detail of the theory. Let H be a separable Hilbert space
describing the physical system of interest. Denote the set of linear operators on H and the
set of density operators, by L(H) and by S(H)(⊂ L(H)), respectively. Let � be a parameter
space which is a subset of the set R of real numbers, and assume that the density matrix for
the system of interest is a member of a parametrized family of states, {ρθ ; θ ∈ �}, which is
called a model. Throughout the paper, except as otherwise noted, we assume

ρθ > 0, (1)

or the density matrix ρθ has its reverse.
The model is said to be differentiable (resp. non-differentiable), if the map θ �→ ρθ is

differentiable (resp. not differentiable). We would like to estimate g(θ) by measuring the
system where g(θ) is a function of θ . An estimator of g(θ) is a measurement whose output is
an estimate, i.e., a POVM M which takes values on g(R).

2.2.1. Non-asymptotic theory with the smoothness assumptions. In a non-asymptotic setting,
we often impose an unbiasedness condition on estimators, which is defined as follows:

Definition 1. The bias b(M, θ) of an estimator M at θ is defined by

b(M, θ) =
∫

γ∈g(�)

(γ − g(θ)) Tr(ρθM(dγ )).

If b(M, θ) ≡ 0,M is said to be unbiased at θ . If M is unbiased at any θ,M is said to be
unbiased.

The classical CR inequality uses a logarithmic derivative lθ (x) which is defined as

lθ (x) := d

dθ
log p(x, θ),

or as the solution to the equation

p(x, θ)lθ (x) = dp(x, θ)

dθ
.
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There are many quantum analogues of a logarithmic derivative, due to the non-
commutativity of quantum mechanics. Among those, a symmetric logarithmic derivative
(SLD) and a right logarithmic derivative (RLD) are most frequently used.

Definition 2. An SLD LS
θ ∈ L(H) is defined as a solution to the equation

d

dθ
ρθ = ρθL

S
θ + LS

θ ρθ

2
, LS

θ = (
LS

θ

)†
.

An RLD LR
θ ∈ L(H) defined as a solution to the equation

d

dθ
ρθ = ρθL

R
θ . (2)

An SLD and an RLD are uniquely defined since ρθ is invertible by assumption (1). The
performance of an estimator M of g(θ) is evaluated by the MSE

Vθ(M) =
∫

γ∈g(�)

(γ − g(θ))2 Tr(ρθM(dγ )).

If the bias b(M, θ) is exactly zero, MSE is equal to what is called variance. An SLD and an
RLD quantum Cramér–Rao inequality are stated as follows:

Proposition 1 [12]. If an estimator M is unbiased, it holds that

Vθ(M) � (g′(θ))2
/
J S

θ � (g′(θ))2
/
JR

θ (3)

where

J S
θ = Tr

(
ρθ

(
LS

θ

)2)
, J R

θ = Tr
(
ρθL

R
θ

(
LR

θ

)†)
.

The equality in the first inequality in (3) holds if and only if M gives the spectral decomposition
of a Hermitian matrix T such that T − g(θ)I ∈ span

{
LS

θ

}
, where I is the identity on H.

The proof of the proposition is reviewed in section 5.
See [20] for the classical version of the theory, [12, 16, 25] for the quantum theory.

2.2.2. Asymptotic theory with the smoothness assumptions. Assuming that n identical
independent samples ρ⊗n

θ of unknown states ρθ are given, let us analyse the behaviour
of estimators as n tends to infinity. An estimator is a POVM M living in H⊗n. If the
smoothness assumptions hold, the mean square error converges to zero with the order of
O(1/n). Therefore, we focus on the coefficient of the 1/n-term.

In asymptotic analysis, the unbiasedness condition is replaced by asymptotic unbiasedness
defined as follows.

Definition 3. For the sequence Mn of estimators of g(θ), if the bias b(Mn, θ) satisfies

b(Mn, θ) = o(1/
√

n),
d

dx
b(Mn, x)

∣∣∣∣
x=θ

= o(1/
√

n),

Mn is said to be asymptotically unbiased at θ . If Mn is unbiased at any θ ∈ �,M is said to
be asymptotically unbiased.

The asymptotic quantum Cramér–Rao (AQCR) inequality is stated as follows:

Proposition 2 [7, 10, 8]. Assume that Mn is asymptotically unbiased. Then, we have

lim
n→∞ nVθ(Mn) � (g′(θ))2

/
J S

θ � (g′(θ))2
/
JR

θ . (4)

Especially, the first inequality is achieved by some asymptotically unbiased estimators.
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2.3. Quantum estimation theory with smoothness assumptions (II)

In this subsection, we review quantum estimation theory for vector-valued parameters with
smoothness assumptions. For simplicity, here we concentrate on the estimation of the
parameter itself, and do not treat the estimation of g(θ).

Let us denote by m the dimension of the parameter θ = (θ1, . . . , θm) (m = 1 if θ is
scalar), and define SLD LS

i,θ of θ i and RLD LR
i,θ as the solution to the equations

∂

∂θ i
ρθ = 1

2

(
LS

i,θρθ + ρθL
S
i,θ

) = ρθL
R
i,θ .

Define also matrices J S
θ and JR

θ by

J S
θ,i,j = 1

2 Tr ρθ

(
LS

i,θL
S
j,θ + LS

j,θL
S
i,θ

)
, J R

θ,i,j = Tr ρθL
R
j,θ

(
LR

i,θ

)†
,

respectively.

Proposition 3 [16]. Assume that the estimator M is unbiased (for each θ i). Then, for any real
valued positive matrix G, we have

Sp GVθ(M) � Sp G
(
J S

θ

)−1
, Sp GVθ(M) � Sp G

(
JR

θ

)−1
+ Spabs Im G

(
JR

θ

)−1
.

The proof is reviewed in section 5. Here, Sp is the trace over the vector space C
m, and

Spabs A is the sum of absolute values of eigenvalues of A. Typically, G is chosen to be
diag(g1, . . . , gm), and in that case Sp GVθ(M) is a weighted sum of MSE of the estimators of
components of θ .

Different from the scalar-valued parameter case, we cannot say which one is better
in general. However, if

[
LS

i,θ , L
S
j,θ

] = 0, SLD QCR gives a better lower bound, and is
asymptotically achievable by the estimator based on the simultaneous spectral decomposition
of SLD. If LSD are not commutative, RLD QCR will often be useful.

3. New inequalities for non-differentiable models

3.1. Non-asymptotic theory without the smoothness assumptions

If ρθ and/or the function g(θ) are not differentiable with respect to θ , then the inequality (3)
does not make any sense. In classical statistics, Hammersley [9] and Chapman and Robbins
[6] have derived an inequality using the one-sided difference in place of the derivative, and
Kshirsagar [18] improved it by the two-sided difference. We generalize their idea to the
quantum theory. The proofs of the theorems are given in section 5.

Let F be the linear space of R-valued functions of θ ∈ �. For f (θ) ∈ F and for δ ∈ R,
let �δ be a linear operator defined by

�t
δf (θ) = f (θ + tδ) − f (θ − (1 − t)δ)

δ
.

We next define operators, which are analogues of SLD and RLD.

Definition 4. For δ ∈ R, define L
S,t
θ,δ

(= (
L

S,t
θ,δ

)†)
and L

R,t
θ,δ by

�t
δρθ = ρθL

S,t
θ,δ + L

S,t
θ,δρθ

2
, �t

δρθ = ρθL
R,t
θ,δ . (5)

(LS,t
θ,δ and LR

θ,δ are uniquely defined since ρθ is invertible by the assumption (1).)
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Remark 1. If ρθ is differentiable with θ , then L
S,t
θ,δ → LS

θ and L
R,t
θ,δ → LR

θ as δ → 0 since
�t

δρθ → (d/dθ)ρθ as δ → 0.
If the model is differentiable both from the left and from the right, we have

lim
δ→0+

L
S,t
θ,δ = tL

S,+
θ,t + (1 − t)L

S,−
θ , lim

δ→0+
L

R,t
θ,δ = tL

R,+
θ,t + (1 − t)L

R,−
θ , (6)

where L
S,±
θ and L

R,±
θ are defined by

lim
δ→0±

�1
δρθ = 1

2

(
ρθL

S,±
θ + L

S,±
θ ρθ

) = ρθL
R,±
θ .

(Observe that

�t
δρθ = t�1

tδρθ + (1 − t)�0
(1−t)δρθ .)

If the singular model of our concern is embedded in the larger smooth model, then L
S,±
θ and

L
R,±
θ are calculated from SLD and RLD of the larger model.

Our first result, the quantum Hammersley–Chapman–Robbins–Kshirsagar (QHCRK)
inequality, is given in the following theorem:

Theorem 1. If the estimator M of g(θ) is unbiased, then

Vθ(M) � (�t
δg(θ))2

/
J

S,t
θ,δ (7)

� (�t
δg(θ))2

/
J

R,t
θ,δ (8)

where

J
S,t
θ,δ = Tr

(
ρθ

(
L

S,t
θ,δ

)2)
, J

R,t
θ,δ = Tr

(
ρθL

R
θ,δ

(
L

R,t
θ,δ

)†)
.

The equality in (7) holds if and only if M gives the spectral decomposition of a Hermitian
matrix T such that T − θI ∈ span

{
L

S,t
θ,δ

}
.

We next present the quantum Koike (QK) inequality which improves QHCRK. For a
function f (θ) of θ ∈ �, for a real number δ and for an integer k � 1, we define the kth
difference operator �δ,k by

�δ,kf (θ) = (−1)k
1

δk

k∑
i=0

(−1)i
(

k

i

)
f (θ + δi).

Note that, if f (θ) is k-times differentiable, then �δ,kf (θ) → (dk/d θk)f (θ) as δ → 0. Let us
define LS

θ,δ,k and LR
θ,δ,k as follows:

Definition 5. Define LS
θ,δ,k and LR

θ,δ,k by

�δ,kρθ = ρθL
S
θ,δ,k + LS

θ,δ,kρθ

2

(
LS

θ,δ,k = (
LS

θ,δ,k

)†)
,

�δ,kρθ = ρθL
R
θ,δ,k.

Let us define r × r matrices KS
θ,δ = (

KS
θ,δ,i,j

)
and KR

θ,δ = (
KR

θ,δ,i,j

)
(i, j = 1, . . . , r) by

KS
θ,δ,i,j = Tr

(
ρθL

S
θ,δ,iL

S
θ,δ,j

)
, KR

θ,δ,i,j = Tr
(
ρθL

R
θ,δ,i

(
LR

θ,δ,j

)†)
,

and let v = t (�θ,δ,1g(θ), . . . ,�θ,δ,rg(θ)) be a column vector. We then have the following
quantum Koike inequality which generalizes and improves the QHCRK inequality of
theorem 1.
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Theorem 2. If an estimator M for g(θ) is unbiased, then

Vθ(M) � tv
(
KS

θ,δ

)−1
v, (9)

Vθ(M) � tv
(
KR

θ,δ

)−1
v, (10)

where
(
KS

θ,δ

)−1
and

(
KR

θ,δ

)−1
are generalized inverses. The equality holds if and only if M can

be written as an observable T such that T − θI ∈ span
{
LS

θ,δ,1, . . . , L
S
θ,δ,k

}
.

Remark 2. We can derive the Bhattacharyya inequality by theorem 2.

3.2. Asymptotic theory without the smoothness assumptions

If the smoothness assumptions are not valid, MSE Vθ(Mn, θ) of appropriate estimators Mn

does not necessarily scale in O(1/n). (This point is discussed in [22] in detail in the classical
estimation theory.) The convergence rate was expressed by an increasing sequence cn that
goes to infinity as n → ∞.

In this paper, we study the following two cases.

Case 1. The parameter of the model takes discrete values, and each point in the model is
isolated, and g(θ) = θ .
Case 2. The model and the function g(θ) are continuous,

In case 1, if the model has only two density matrices, the estimation of θ seems quite close to
the test of a simple hypothesis about θ . We discuss this point later. In both cases 1 and 2, we
use RLD-type inequalities, since SLD-type inequalities are mathematically intractable.

3.2.1. Discrete case. If the set � of parameters is discrete and each element of � is
isolated (i.e., there is a positive real number c such that, for any θ and θ ′ ∈ �, it holds that
‖ρθ − ρθ ′ ‖tr > c), then the convergence rates of the bias and the variance of appropriate
estimators are exponential.

Assume that θ, θ + δ ∈ �, and that there is no element of � ⊂ R between θ and θ + δ.
We also assume that g(θ) �= g(θ + δ). Then, we have the following asymptotic QHCRK
(AQHCRK) inequality for the discrete case.

Theorem 3. Assume that there is n0 such that, if n � n0, then b(Mn, θ) and b(Mn, θ + δ)

satisfy
|b(Mn, θ)|

|δ| � |�δg(θ)|
3

, and
|b(Mn, θ + δ)|

|δ| � |�δg(θ)|
3

. (11)

Then

lim inf
n→∞

1

n
log(Vθ (Mn)) � − log

(
1 + δ2J

R,1
θ,δ

)
. (12)

Proof. Observe

Tr ρ−1
θ ρ2

θ+δ = 1 + δ2J
R,1
θ,δ . (13)

Replacing ρθ and ρθ+δ in (13) by ρ⊗n
θ and ρ⊗n

θ+δ , we obtain

Tr
(
ρ⊗n

θ L
R,(n)
θ,δ

(
L

R,(n)
θ,δ )†

) = 1

δ2

{
Tr
(
ρ⊗n

θ

)−1(
ρ⊗n

θ+δ

)2 − 1
} = 1

δ2

((
Tr ρ−1

θ ρ2
θ+δ

)n − 1
)

= 1

δ2

((
1 + δ2J

R,1
θ,δ

)n − 1
)
, (14)

where the last equation is due to (13).
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Assumption (11) and formula (28) imply that, for n � n0,

1

n
log Vθ(Mn) � 1

n
2 log |�δb(Mn, θ) + �δg(θ)| − 1

n
log Tr

(
ρ⊗n

θ,δ L
R,(n)
θ,δ

(
L

R,(n)
δ

)†)
= 1

n
2 log

∣∣∣∣b(Mn, θ + δ) − b(Mn, θ)

δ
+ �δg(θ)

∣∣∣∣ − 1

n

(
1 + δ2J

R,1
θ,δ

)n − 1

δ2

� 1

n
2 log

|�δg(θ)|
3

− 1

n
log

(
1 + δ2J

R,1
θ,δ

)n − 1

δ2

→ − log
(
1 + δ2J

R,1
θ,δ

)
(n → ∞).

Hence (12) holds. �

We would like to remark that log(1 + δ2J
R,1
θ,δ ) is always not smaller than the relative

entropy D(ρθ+δ ‖ ρθ ), which is defined as

D(ρθ+δ‖ρθ ) = Tr(ρθ+δ(log ρθ+δ − log ρθ )).

The reason is the following. Consider a model � = {θ, θ + δ}. Due to the theory of quantum
hypothesis testing ([13, 21]), for any ε > 0, there is a sequence Nn of POVMs taking values
in R such that

Tr
(
ρ⊗n

θ+δNn(θ)
)

� |�δg(θ)|
3

, lim
n→∞

1

n
log Tr

(
ρ⊗n

θ Nn(θ + δ)
) = −D(ρθ+δ ‖ ρθ ). (15)

We can regard Nn as an estimator of θ satisfying (11). Indeed, there is n0 such that, if n � n0

then

|b(Nn, θ)|
|δ| = |δ| Tr(ρ⊗n

θ Nn(θ + δ))

|δ| � |�δg(θ)|
3

,

|b(Nn, θ + δ)|
|δ| = |δ| Tr

(
ρ⊗n

θ+δNn(θ)
)

|δ| � |�δg(θ)|
3

.

Moreover,

1

n
log Vθ(Nn) = 1

n
log

((
g(θ + δ) − g(θ))2 Tr

(
ρ⊗n

θ Nn(θ + δ)
))

→ −D(ρθ+δ ‖ ρθ ) (n → ∞).

Due to (12), we have D(ρθ+δ‖ρθ ) � log
(
1 + δ2J

R,1
θ,δ

)
.

3.2.2. Continuous case. Let L
R,n,t
θ,δ be the solution to the equation

�t
δρ

⊗n
θ = ρ⊗n

θ L
R,n,t
θ,δ .

For h ∈ R, let δ = h/cn. Define that

J
R,t
θ = lim sup

h→+0
lim sup

n→∞
1

c2
n

Tr
(
ρ⊗n

θ L
R,n,t
θ,h/cn

(
L

R,n,t
θ,h/cn

)†)
, g′

t (θ) = lim
δ→+0

�t
δg(θ).

If ρθ is differentiable from the right (resp. left), JR,1
θ (resp. JR,0

θ ) is equal to JR
θ where the

two-sided derivative in (2) is replaced with the right (resp. left) derivative. This is shown as
follows. Replacing δ with h/

√
n and cn with

√
n in (14), we have

J
R,1
θ = lim sup

h→+0
lim sup

n→∞

(
1 + h2JR

θ,h/
√

n
/n

)n − 1

h2
= lim sup

h→+0

eh2JR
θ − 1

h2

= JR
θ .

(16)

(The left differentiable case is also given in a similar way.)
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Next, we define asymptotic unbiasedness for a sequence Mn of estimators of g(θ) based
on measurements of ρ⊗n

θ as follows:

Definition 6. A sequence Mn of estimators of g(θ) is said to be cn-unbiased at θ from the
right if

cnb(Mn, θ + h/cn) → 0 as n → ∞
for any h � 0 which is small enough. Similarly, Mn is said to be cn-unbiased at θ from the
left if

cnb(Mn, θ − h/cn) → 0 as n → ∞
for any h � 0 small enough.

Then, we have the following asymptotic right (resp. left) QHCRK inequality.

Theorem 4. Assume that Mn is cn unbiased at θ from the right (resp. from the left), and
J

R,1
θ < ∞, |g′

1(θ)| < ∞ (resp. J
R,0
θ < ∞, |g′

0(θ)| < ∞). Then,

lim inf
n→∞ c2

nVθ (Mn) � (g′
1(θ))2

/
J

R,1
θ

(
resp. lim inf

n→∞ c2
nVθ (Mn) � (g′

0(θ))2J
R,0
θ

)
. (17)

The proof is given in section 5.

Remark 3. Due to (16), theorem 4 implies AQCR inequality. Note that this argument is
technically much more complicated than the proof of the similar statement in non-asymptotic
theory. In fact, it is not straightforward to prove a similar relation between asymptotic SLD-
base inequalities, for the absence of the equivalence of equation (14).

3.3. Non-asymptotic theory for a model with a vector-valued parameter

Define an operator �t
i,δ by

�t
i,δf (θ) = f (θ1, . . . , θ i + tδ, . . . , θm) − f (θ1, . . . , θ i − (1 − t)δ, . . . , θm)

δ
,

and the difference version of SLD L
S,t
i,θ,δ and RLD L

R,t
i,θ,δ is defined as the solution to the

equations

�t
i,δρθ = 1

2

(
L

S,t
i,θ,δρθ + ρθL

S,t
i,θ,δ

) = ρθL
R,t
i,θ,δ.

The following relation will be useful for further analysis.
For t = (ti , . . . , tm) (0 � ti � 1) and δ = (δ1, . . . , δm), define matrices J

S,t
θ,δ , J

R,t
θ,δ by

J
S,t
θ,δ,i,j = 1

2 Trρθ

(
L

S,ti
i,θ,δi

L
S,tj
j,θ,δj

+ L
S,tj
j,θ,δj

L
S,ti
i,θ,δj

)
, J

R,t
θ,δ,i,j = Tr ρθL

R,tj
j,θ,δj

(
L

R,ti
i,θ,δj

)†
.

Analogously to models with scalar parameters, we have the following theorem, which is
proven in section 5.

Theorem 5. If the estimator is unbiased, for any δ and for any t such that 0 � ti � 1, we have

Sp GVθ(M) � Sp G
(
J

S,t
θ,δ

)−1
,

Sp GVθ(M) � Sp G
(
J

R,t
θ,δ

)−1
+ Spabs Im G

(
J

R,t
θ,δ

)−1
.

4. Examples

In this section, we will demonstrate our theory in several examples.
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4.1. Estimation of concurrence

For −1 < θ < 1, let ρθ be a density matrix on a 2 × 2 system given by

ρθ = 1 + θ

2
|	+〉〈	+| +

1 − θ

2
|	−〉〈	−|

where |	±〉 = (|00〉 ± |11〉)/√2 are maximally entangled states which are mutually
orthogonal. This type of state can be produced by parametric down conversion [19].

Let g(θ) = |θ |, which is equal to the concurrence [23], a measure of the quantum
entanglement between two 2-level systems. At θ �= 0, we can define the usual SLD and RLD,
and both J S

θ and JR
θ are given by

J S
θ = JR

θ = 1

1 − θ2
.

At θ = 0, we have

J
S,1
θ,δ = J

R,1
θ,δ = 1

1 − θ2

for any −1 < δ < 1. Therefore, the QHCRK inequality is

Vθ(M) � 1 − θ2.

In this model, however, there is no unbiased estimator for g(θ) = |θ |. Therefore, the inequality
is nonsense in the non-asymptotic setting.

Let us consider the asymptotic case, where we construct a sequence Mn of estimators
of g(θ), which achieves the asymptotic AQHCRK bound. Here, cn = √

n. The AQHCRK
inequality for estimators which are

√
n-unbiased from the right is given due to (16)

lim
n→∞ c2

nVθ (Mn) � 1 − θ2.

This bound is achieved by the following scheme.

Step 1. For i = 1, 2, . . . , n, we measure the ith subsystem of H⊗n by a two-valued POVM
{|	+〉〈	+|, I −|	+〉〈	+|}. Let xi = 1 if |	+〉〈	+| is observed, and let xi = 0 if I −|	+〉〈	+|
is observed.
Step 2. Let

y =
{∑n

i=1 xi/n if
∑n

i=1 xi/n � −n−1/3,

−∑n
i=1 xi/n if

∑n
i=1 xi/n < −n−1/3.

The expectation Eθ(y) of y for ρ⊗n
θ is θ + o(1/n) as n → ∞ so such an estimator Mn is

1/
√

n-unbiased at θ from the right, and Vθ(Mn) = (1 − θ2)/n.

4.2. A discrete model

This example can be regarded as a non-commutative version of the classical model of discrete
uniform distributions.

Define 2 × 2 matrices σ1, σ2 and 02 as

σ1 =
(

1 0
0 0

)
, σ2 =

(
1 1/2

1/2 1

)
, 02 =

(
0 0
0 0

)
.
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Let H be an infinite-dimensional Hilbert space spanned by |1〉, |2〉, |3〉, . . .. For θ ∈ �(= N:
the set of natural numbers), let ρθ ∈ S(H) be a density operator of the form

ρθ =




θ−1 diag(σ2, . . . , σ2︸ ︷︷ ︸
(θ−1)/2

, σ1, 02, 02, . . .) if θ is odd,

θ−1 diag(σ2, . . . , σ2︸ ︷︷ ︸
θ/2

, 02, 02, . . .) if θ is even

where diag(· · ·) means the diagonal matrix.

Remark 4. Though ρθ is not invertible on H, assumption (1) essentially applies to this
example. Indeed, for the achievability of the lower bound, it is sufficient to consider the
subspace H′

θ (⊂ H) supported by ρθ .

4.2.1. One-sample analysis. When θ is even, there is an estimator of θ which minimizes
variance. Define a Hermitian matrix T by

T = diag(T1, T3, T5, . . .)

where, for an odd number i,

Ti =
(

2i − 1 1/2
1/2 2i + 1/2.

)
.

Let the spectral decomposition, described by M, be the estimator of θ . Since

Tr(ρθT ) = θ for any θ,

M is an unbiased estimator.
If θ is even, then M is optimum. The proof is as follows. Define �0,�1, . . . , �θ−1 by

ρk = ρθ�k + �kρθ

2
(k = 0, 1, . . . , θ − 1),

that is,

�i =




θ

θ − i
diag (1, . . . , 1︸ ︷︷ ︸

θ−i

, 0, 0, . . .) if i is even,

θ

θ − i
diag


1, . . . , 1︸ ︷︷ ︸

θ−i−2

,

(−1/6 1/3
1/3 5/6

)
, 0, 0, . . .


 if i is odd.

Since

�−1,kρθ = ρθL
S
θ,−1,k + LS

θ,−1,kρθ

2

= ρθ

(
(−1)k

∑k
i=0(−1)i

(
k

i

)
�i

)
+
(
(−1)k

∑k
i=0(−1)i

(
k

i

)
�i

)
ρθ

2
,

we have

LS
θ,−1,k = (−1)k

k∑
i=0

(−1)i
(

k

i

)
�i.

That is, there is a triangle matrix U with nonzero diagonal elements such that
(
LS

θ,−1,0,

LS
θ,−1,1, . . . , L

S
θ,−1,θ−1

) = Ut(�0,�1, . . . , �θ−1). This means that
{
LS

θ,−1,k

}
and {�k} have

a one-to-one correspondence. Since T is an element of span{�0,�1, . . . , �θ−1}, T − θ ∈
span

{
LS

θ,−1,1, . . . , L
S
θ,−1,θ−1

}
. Hence the equality in (9) holds.
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By direct calculation, the MSE of M is given by

Vθ(M) =
{
θ2/3 − 7/12 + 1/(2θ) if θ is odd,
θ2/3 − 7/12 if θ is even.

When θ is odd, a similar argument of LS
θ,−1,k implies that the best estimator should be

given by the spectral decomposition of T ′ of the form

T ′ = diag(T1, T3, . . . , Tθ−2, T
′
θ , Tθ+2,...)

where

T ′
θ =

(
2θ − 1 0

0 2θ + 1

)
.

The MSE of the estimator is

θ2/3 − 7/12 + 1/(4θ)

for odd θ . However, T ′ depends on the unknown parameter θ . In this sense, there is no
estimator which uniformly achieves the QK bound.

4.2.2. Asymptotic analysis. Let us consider the asymptotic setting, ρn
θ = ρ⊗n

θ . Since this
model is discrete and each element ρθ is isolated, due to theorem 3, we have the following
lower bound to lim infn→∞ log Vθ(Mn),

log
(
1 + J

R,1
θ,−1

) =
{

log(θ/(θ − 1)) if θ is odd,

log(θ/(θ − 1)) + log 3θ − 2
3(θ − 1)

if θ is even.

Based on an asymptotically optimal test between two hypotheses, we will construct an
estimator M, which achieves the AQHCRK bound to the discrete case of theorem 3 if θ

is odd.
M is constructed as follows. First, let �′ be the set of positive even numbers. Next, let

M ′ be a POVM of the form

M(θ ′) = diag(0, . . . , 0︸ ︷︷ ︸
θ ′−2

, I2, 0, 0, . . .)

where I2 is the 2 × 2 identity matrix. We independently apply M ′ to each sample, and let
θ̂ ′
i ∈ �′ be the observed value for the ith sample. Let θ̂max = max{θ̂ ′

1, . . . , θ̂
′
n}. Our next step

is the estimation in a submodel �′ = {θ̂max, θ̂max − 1} ⊂ �. Let Nn be a POVM given in (15)
where θ = θ̂max − 1 and θ + δ = θ̂max. Since each M ′(θ ′) commutes with ρθ̂max−1 and ρθ̂max

,
due to [13], M ′ and Nn commute. Applying such a measurement Nn, the estimate θ̂ of θ is
given by

θ̂ =
{
θ̂max − 1 if θ̂max − 1 ∈ �′ is observed,

θ̂max if θ̂max ∈ �′ is observed.

The exponent of MSE of this estimator M is given by

lim inf
n→∞

1

n
log Vθ(M) =

{
−D(ρθ−1 ‖ ρθ ) = − log

(
1 + J

R,1
θ,−1

)
if θ is odd,

−D(ρθ−1 ‖ ρθ ) > − log
(
1 + J

R,1
θ,−1

)
if θ is even

where

D(ρθ−1 ‖ ρθ ) = log
θ

θ − 1
+

1

θ − 1
log

2√
3

if θ is even.
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4.3. Submodels of the Gaussian state model

We consider singular submodels of the Gaussian state model, whose theory [25, 16] is reviewed
in the next subsection. In the last subsection of this section, we study a vector-valued submodel
of the Gaussian state model, to see the effect of non-commutativity explicitly. Before that, for
preparation, we study a submodel of this model, which has scalar-valued parameter.

4.3.1. Gaussian state model. For simplicity, we chose the unit such that h̄ = 1. The Gaussian
state model is a family of states living in the Fock space, H = span{|n〉; n = 0, 1, 2, . . .}, such
that

ρG
θ =

∫
dp dq

2π(σ 2 − 1/2)
exp

(
− (p − θ1)2 + (q − θ2)2

2(σ 2 − 1/2)

)
|p, q〉〈p, q|,

where |p, q〉 is a coherent state. After some calculations, one would obtain [16]

LS
1,θ = 1

σ 2
(P − θ1), LS

2,θ = 1

σ 2
(Q − θ2),

LR
1,θ = 1

σ 4 − 1/4

(
σ 2(P − θ1) +

√−1

2
(Q − θ2)

)
,

LR
2,θ = 1

σ 4 − 1/4

(
σ 2(Q − θ2) −

√−1

2
(P − θ1)

)
,

J S
θ = 1

σ 2

[
1 0

0 1

]
, J R

θ = 1

σ 4 − 1/4

[
σ 2 −

√−1
2√−1

2 σ 2

]
.

(18)

The submodels
{
ρG

(θ1
0 ,θ2)

; θ2 ∈ R
}

and
{
ρG

(θ1,θ2
0 )

; θ1 ∈ R
}

are exponential families, and the

equality in the SLD QCR inequality,

Vθ(M) � σ 2,

is achieved for both models, the former by the spectral decomposition of P, and the latter by
the spectral decomposition of Q.

For the model
{
ρG

θ ; θ ∈ R
2} with 2-dim parameter, it is known that the equality in the

RLD QCR inequality is achieved. Namely, with G = I , the RLD and the SLD QCR inequality
is given by

Sp Vθ(M) � 2σ 2 + 1, Sp Vθ(M) � 2σ 2,

respectively. For SLDs, because scalar multiplications of P and Q are not commutative, the
achievable bound is larger than the bound by SLD QCR.

If the thermal noise is very large and thus σ is very large, the difference between the SLD
QCR and RLD QCR is negligible, meaning that the effect of non-commutativity is relatively
negligible.

Letting |p, q〉 be a coherent state, the optimal estimator is

{|θ1, θ2〉〈θ1, θ2|}.
This POVM is often referred to as the optimal simultaneous measurement of P and Q, for this
satisfies the relation∫

dp dq

2π
p|p, q〉〈p, q| = P,

∫
dp dq

2π
q|p, q〉〈p, q| = Q, (19)

and gives the smallest sum of MSEs in all such POVMs.
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4.3.2. A singular submodel with scalar parameter. The model {ρθ ; θ ∈ R}, where

ρθ =
{

ρG
(0,0) ⊗ ρG

(θ,0) (θ � 0)

ρG
(θ,0) ⊗ ρG

(0,0) (θ � 0),

has a singularity at θ = 0, and the singular point is differentiable both from the left and the
right. In the following, we denote by Pi and Qi the quadrature operators of the mode i.

The SLD QHCRK inequality for θ �= 0 coincides with the SLD QCR inequality, and is
given by

Vθ(M) � σ 2 (θ �= 0). (20)

The equality is achieved by the spectral decomposition of P2 (resp. P1) if θ < 0 (resp. θ > 0),
in this region of the parameter. However, that neither P1 nor P2 is unbiased all over the model.

At the point θ = 0, due to (6) and (18), we have

lim
δ→0+

L
S,t
θ,δ = 1

σ 2
(tP1 + (1 − t)P2),

and letting t = 1
2 , we obtain the lower bound,

V0(M) � 2σ 2. (21)

The estimator given by the spectral decomposition of P1 + P2 is unbiased at all θ ∈ �, and
achieves the equality in the inequality (21). This estimator, however, does not achieve the
lower bound by (20) at θ �= 0.

We conjecture, however, that this estimator is optimal, and that the lower bound (21) is
a lower bound all over the model. Indeed, we can improve the lower bound (20) as follows.
Almost in parallel with theorem 2, we have the following Koike-type inequality:

Vθ(M) � (1 1)

(
Tr ρθL

R,1
θ,δ1

(
L

R,1
θ,δ1

)†
Tr ρθL

R,1
θ,δ1

(
L

R,1
θ,δ2

)†
Tr ρθL

R,1
θ,δ2

(
L

R,1
θ,δ1

)†
Tr ρθL

R,1
θ,δ2

(
L

R,1
θ,δ2

)†
)−1 (

1
1

)
. (22)

Let us choose infinitesimally small δ2, or take the limit δ2 → 0. Then, the right-hand side is

1

J
+

(δ1)
2

eJ ((θ)2+(δ1)2) − 1 − (θ)2J
, (23)

with J being the (1, 1)-component of JR
θ for the model

{
ρG

θ ; θ ∈ R
2}, which is given in

equations (18).
The detail of the calculation is omitted, but the key is the following equality:

Tr ρG−1
0 ρG

(x,y)ρ
G
(z,w) = exp(J (xz + yw) − A(xw − yz)), (24)

with A being the (1, 2)-component of JR
θ for the model

{
ρG

θ ; θ ∈ R
2}, which is given in the

equations (18). The rough derivation of equation (24) will be given in section 5.
Let us chose δ1 to be very small, or take the limit δ1 → 0, and consider the case where

(θ)2

σ 2 � 1 and 1
σ 2 � 1 . Then, the bound (23) is very close to the bound (21), which we

conjecture is the tight bound all over the model. At least, as in figure 1, the new lower bound
improves the bound by the SLD QHCRK inequality with δ → 0 in some cases.

4.3.3. A singular model with the vector-valued parameter. The model {ρθ ; θ ∈ R}, where

ρθ =




ρG
(0,0) ⊗ ρG

(θ1,θ2)
(θ1 � 0, θ2 � 0)

ρG
(θ1,0)

⊗ ρG
(0,θ2)

(θ1 � 0, θ2 � 0)

ρG
(0,θ2)

⊗ ρG
(θ1,0)

(θ1 � 0, θ2 � 0)

ρG
(θ1,θ2)

⊗ ρG
(0,0) (θ1 � 0, θ2 � 0),
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Figure 1. A Koike-type lower bound is plotted against δ1, when σ = 1 and θ = 1. With optimal
δ1, the new equality improves the SLD QHCRK inequality with δ → 0, which equals 1 (= σ 2).

has a singular point at θ = 0, and the singular point is differentiable both from the left and
the right. The parameter space � is broken down into the following three parts according to
types of singularity.

(1) θ1 �= 0 and θ2 �= 0: differentiable.
(2) θ1 �= 0 or θ2 �= 0: differentiable with respect to θ1 or θ2.
(3) θ1 = 0 and θ2 = 0: undifferentiable with respect to θ1 and θ2.

In the case of (1), QHCRK inequalities for θ �= 0 coincide with their differentiable
versions (QCRs). Namely, in the region {θ; θ1 � 0, θ2 � 0} the bound by the RLD QHCRK
inequality

Sp Vθ(M) � 2σ 2 + 1 (25)

is achieved by the estimator {|θ1, θ2〉〈θ1, θ2| ⊗ I }, where |θ1, θ2〉 is a coherent state. The
similar holds for the region {θ; θ1 � 0, θ2 � 0}. In the region {θ; θ1 � 0, θ2 � 0} the bound
by the SLD QHCRK inequality

Sp Vθ(M) � 2σ 2

is achieved by the simultaneous spectral decomposition of P2 ⊗ Q1. The similar holds for the
region {θ; θ1 � 0, θ2 � 0}. However, none of those ‘locally optimal’ estimators is unbiased
all over the model.

Next, we consider the case of (2). Namely, we consider the region {θ; θ1 � 0, θ2 = 0}.
(Other regions in this case are essentially the same.) If θ1 � 0 and θ2 = 0, due to (6) and
(18), we can compute limδ→0+ L

S,ti
i,θ,δ limδ→0+ L

R,ti
i,θ,δ (i = 1, 2), explicitly, and the RLD and the

SLD QHCRK inequalities are obtained as

Sp Vθ(M) �
(
σ 4 − 1

4

)
σ 4

(
2t2

2 − 2t2 + 1
) − (1 − t2)2

4

{
2σ 2

(
t2
2 − t2 + 1

)
+ 1 − t2

}
,

Sp Vθ(M) � σ 2

2t2
2 − 2t2 + 1

+ σ 2,

respectively.
Now, our concern is the value of t2 which gives the largest lower bound (see figure 2). If

σ is very large (thus the effect of non-commutativity is negligible), then the right-hand side
of the RLD QHCRK is almost the same as the right-hand side of the SLD QHCRK, and gives
the largest lower bound at t2 = 1/2. On the other hand, let us consider the opposite extreme
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Figure 2. The lower bound by the QHCRK inequality is plotted against t2 and σ 2. When σ 2 = 1
2

(no thermal noise), the largest lower bond is given by t2 = 0. As σ 2 tends to larger values, the
peak moves towards t2 = 1

2 .

case where the noise is purely quantum, that is, the Gaussian states are coherent states. This
case is obtained by letting σ 2 = 1/2. If and only if t2 = 0, the right-hand side of the RLD
QHCRK gives the non-trivial lower bound,

SpVθ(M) � 2.

(If t2 �= 0, the right-hand side of the inequality vanishes.)
To sum up, the value of t2 which gives the best bound is dependent on the non-

commutativity inherent in the model.
Finally, the case of (3) is analysed. Due to (6) and (18), limδ→0+ L

R,ti
i,θ,δ (i = 1, 2) are

computed explicitly. Letting t1 = t2 = 1/2, we have the following RLD QHCRK inequality,

Sp Vθ(M) � 4σ 2 + 2. (26)

This choice of the parameters t1, t2 is optimal, for the unbiased estimator which is constructed
below achieves this lower bound.

Let

P1∗ = P1 + P2√
2

, Q1∗ = Q1 + Q2√
2

, P2∗ = P1 − P2√
2

, Q2∗ = Q1 − Q2√
2

.

Then, Pi∗ ,Qi∗ satisfies the canonical commutation relation, and Pi∗ ,Qj∗ (i �= j) commutes.
Consider the new split of the system into the modes 1∗ and 2∗, introduce a new coherent state
|p, q〉∗ with respect to P1∗ and Q1∗ , and define an estimator

{|θ1/
√

2, θ2/
√

2〉∗ ∗〈θ1/
√

2, θ2/
√

2| ⊗ I }.
Observing that the expectations of P1 + P2 and Q1 + Q2 coincide with θ1 and θ2 respectively,
the unbiasedness of the estimator is checked by using (19). A straightforward calculation
shows that this estimator achieves the lower bound implied by (26).

This estimator is optimal at θ = 0, and unbiased all over the model. We conjecture
that the lower bound at other points of the model is improved to show the optimality of this
estimator.

In fact, for example, the lower bound (25) is improved by using the RLD QHCRK
inequality with a finite δ. Let θ1 < 0, θ2 < 0, and δ1 = −θ1 + t, δ2 = −θ2 + s, for
s > 0, t > 0. Then, due to (24), the RLD QHCRK inequality is calculated as

Sp Vθ(M) � a + d + 2|c|
ad − b2 − c2

.
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Figure 3. RLD QHCRK bound with δi = 2θ i (a), and with δi → 0 (b), are plotted against
θ(θ i < 0). (c) is the conjectured lower bound (and is the RLD QHCRK bound at θ = 0). (a) is
above (b) in some region, and is very close to (c) around the origin.

Here, letting J and A be the (1, 1)- and the (1, 2)-components of the JR
θ for the model{

ρG
θ ; θ ∈ R

2}, respectively,

a = eJ ((θ1)2+(t)2) − 1

(θ1 + t)2
, d = eJ ((θ2)2+(s)2) − 1

(θ2 + s)2
, b +

√−1c = e−A(ts+θ1θ2)) − 1.

When 1
σ 2 � 1 and (θ i )2

σ 2 � 1 (i = 1, 2), letting t = θ1 and s = θ2, the bound is nearly 4σ 2,
and is close to (26), which is conjectured to be a lower bound all over the model.

As is indicated in figure 3, we can observe in some region of the parameter space, the new
bound, the RLD QHCRK bound with δi = 2θ i (θ i < 0) improves (25).

5. Proofs

In this section, we give proofs of theorems. First, we prepare a lemma which says that the
best unbiased estimator is a projection-valued measure (PVM).

Lemma 1. Let

T =
∫

γ∈g(�)

γM(dγ ).

Then, it holds that∫
γ∈g(�)

γ 2 Tr(ρθM(dγ )) � Tr(ρθT
2).

Proof. ∫
γ∈g(�)

γ 2 Tr(ρθM(dγ )) − Tr(ρθT
2) = Tr

(
ρθ

∫
γ∈g(�)

(γ − T )2M(dγ )

)
� 0.

�
Hence we use an observable T to describe the POVM M in proofs of theorems 1 and 2.



1610 Y Tsuda and K Matsumoto

5.1. Proof of theorem 1

Let T ∈ L(H) be an operator satisfying Tr(ρθT ) = g(θ). By Schwartz’s inequality, it holds
that

Tr(ρθ (T − g(θ))2) Tr
(
ρθ

(
LS

θ

)2) �
(
Tr
(
ρθ (T − g(θ)LS

θ

))2

= (Tr((T − g(θ))(�δρθ )))
2 = (�δg(θ))2. (27)

Therefore, (7) holds. In addition,

0 � Tr
(
ρθ

(
LS

θ,δ − LR
θ,δ

)(
LS

θ,δ − LR
θ,δ

)†)
= Tr

(
ρθ

(
LS

θ,δ

)2) − 2 Tr
(
LS

θ,δ�δρθ

)
+ Tr

(
ρθL

R
θ,δ

(
LR

θ,δ

)†)
= −Tr

(
ρθ

(
LS

θ,δ

)2)
+ Tr

(
ρθL

R
θ,δ

(
LR

θ,δ

)†)
.

Hence, (8) holds. The equality in (27) holds if and only if T − g(θ) = cLS
θ for a constant

c ∈ R.

5.2. Proof of theorem 2

Let

v = (
T − g(θ), LS

θ,δ,1, L
S
θ,δ,2, . . . , L

S
θ,δ,k

)
.

Let V be a (k + 1)-dimensional C-vector space, Then, v can be regarded as an element of
V ⊗ L(H). Let IV be the identity matrix on V . Let P = ρθ ⊗ IV . It holds that

0 � TrH(P vv†) =
(

Vθ(M) tv
v KS

)
(= A, say),

where TrH means the partial trace over H. Consequently, we obtain

Vθ(M) − tv(KS)−1v = (1 tv(KS)−1)A

(
1

(KS)−1v

)
� 0.

This implies (9). By a similar argument, (10) is also shown.

5.3. Proof of theorem 4

In a similar way to (27), Schwartz’s inequality implies that

c2
nVθ (Mn) �

(
�h/cn

b(Mn, θ) + �h/cn
g(θ)

)2

Tr
(
ρn

θ

(
L

S,(n)
θ,h/cn

)2)
�

(
�h/cn

b(Mn, θ) + �h/cn
g(θ)

)2

Tr
(
ρn

θ L
R,(n)
θ,h/cn

(
L

R,(n)
θ,h/cn

)†) (28)

and hence (17) holds as n → ∞.

5.4. Proofs of proposition 3 and theorem 5

Let

〈A,B〉1,ρ = 1
2 Tr ρ(BA† + A†B), 〈A,B〉2,ρ = 1

2 Tr ρ(BA†),

�X = (X1, X2, . . . , Xm)T , Zρ( �X) = [〈Xi,Xj 〉2,ρ].

Observe that

Re Zρ( �X) = [〈Xi,Xj 〉1,ρ].
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Lemma 2.

Vθ(M) � Zρ( �X), Vθ (M) � Re Zρ( �X).

Lemma 3. Let 〈· , ·〉 be an inner product, and �X = (X1, X2, . . . , Xm)T , �L =
(L1, L2, . . . , Lm)T , where X1, X2, . . . , Xm,L1, L2, . . . , Lm are members of the vector space
of our concern. Denote matrices [〈Xi,Xj 〉] and [〈Li, Lj 〉] by  �X and �L, respectively, and
assume [〈Xi, Lj 〉] = δi

j . Then, −1
�X and −1

�L exist, and

 �X � −1
�L

holds.

Lemma 4. For any positive Hermitian matrix Z, we have

min
V

Sp GV = Sp GZ + Spabs Im GZ, (29)

where V runs over all positive real matrices such that V � Z.

For the proofs of lemmas 2–4, see [16].
Let 〈· , ·〉 be 〈· , ·〉1,ρθ

and let Li be LS
i,θ (resp. L

S,t
i,θ,δ ) in lemma 3, and combine with

lemmas 2 and 4. Noting that Im J S
θ = 0 (resp. Im J

S,t
θ,δ = 0), then we have the first inequality in

proposition 3 (resp. the first inequality in theorem 5). Similarly, letting 〈· , ·〉 be 〈· , ·〉2,ρθ
and

letting Li be LR
i,θ (resp. L

R,t
i,θ,δ) in lemma 3, we have the second inequality in proposition 3

(resp. the second inequality in theorem 5).

5.5. Derivation of equation (24)

Due to ρG
0 = (1 − c)

∑∞
n=0 c−n|n〉〈n|, where c−1

(1−c−1)2 = σ 2 − 1
2 , we have

Tr ρG−1
0 ρG

(x,y)ρ
G
(z,w) = (1 − c)

∫
α∈C,β∈C

d2α d2β

4π2(σ − 1/2)2

× exp

(
−|α − x − √−1y|2 + |β − z − √−1w|2

2(σ 2 − 1/2)

) ∞∑
n=0

cn〈n|α〉〈α|β〉〈β|n〉

= (1 − c)

∫
α∈C,β∈C

d2α d2β

4π2(σ − 1/2)2

× exp

(
−|α − x − √−1y|2 + |β − z − √−1w|2

2(σ 2 − 1/2)

) ∞∑
n=0

cn αn

√
n!

exp

(
− 1

2
|α|2

)

× exp

(
−|α|2

2
+ α∗β − |β|2

2

)
β∗n

√
n!

exp

(
−1

2
|β|2

)

= (1 − c)

∫
α∈C,β∈C

d2α d2β

4π2(σ − 1/2)2

× exp

(
−|α − x − √−1y|2 + |β − z − √−1w|2

2(σ 2 − 1/2)
− |α|2 − |β|2 + α∗β

)

×
∞∑

n=0

(cαβ∗)n

n!
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= (1 − c)

∫
α∈C,β∈C

d2αd2β

4π2(σ − 1/2)2

× exp

(
−|α − x − √−1y|2 + |β − z − √−1w|2

2(σ 2 − 1/2)
− |α|2 − |β|2 + α∗β + cαβ∗

)
.

Repeated application of the formula,
∫

e−A(x−B)2 = √
π
A

leads to equation (24).

6. Discussions

We have given the first treatment of quanta singular statistical models. Namely, we proposed
two kinds of quantum versions of the HCRK inequality and Koike inequality. One is based on
the difference version of SLD, and the other is based on the difference version of RLD. The
asymptotic theory based on the RLD QHCRK inequality is also discussed.

We applied those results to some examples. The first example was estimation of
entanglement measure, which is very simple but practically of some importance. We
constructed an asymptotically optimal estimate in this case. The second example is the
estimation of the discrete parameter. It should be stressed that from the viewpoint of
conventional state detection theory, the non-asymptotic analysis is very hard, while our
approach is technically more tractable. The third example is the estimation of the vector-
valued parameter, and here we could observe the effect of non-commutativity.

There are many unsolved problems. Especially, asymptotic theory is far from complete.
For example, an asymptotic theory based on SLD QHCRK inequality is desired, for SLD-
based lower bounds are better than those based on RLD, if the parameter is scalar. As for
the piece-wise differentiable models, we can trivially extend the theory of differentiability by
imposing asymptotic unbiasedness instead of

√
n-unbiasedness on the estimator. However,

SLD versions of theorems 3 and 4 are very hard to obtain, for we do not have the equivalence
of (14). Note that this difficulty is due to non-commutativity, or more specifically, the hardness
of calculation of the SLD. Hence, similar problems never arise in classical estimation theory.
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